EUPSE EXPLORATION
AA 2: WK 12 BLOCK

Solve the following for y and graph.

1. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

2. $\frac{x^{2}}{36}+\frac{y^{2}}{16}=1\left(1-\frac{x^{2}}{9}\right)$

$$
y= \pm \sqrt{16\left(1-\frac{x^{2}}{36}\right)}
$$

x	y
0	± 4
-6	0
-6	

What do the graphs have in common?
OVal - shaped
How do you know how far out on the x -axis to go?

$$
\sqrt{\text { crouton the axis togo? }} \text { under } x^{2}
$$

How do you know how far out ane the go?

$$
\sqrt{n u m b e r} \text { under } y^{2}
$$

The standard form of the Ellipse is: $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ centered at (h,k)
Rewrite these equations into standard form and graph. Then state the vertices, co-vertices of the ellipse. The vertices are the endpoints of the longer (major) axis of the ellipse. The co-vertices are the endpoints of the shorter (minor) axis of the ellipse.

$$
\text { must }=1
$$

2. $\frac{5 x^{2}}{25}+\frac{y^{2}}{25}=\frac{25}{25}$
$\underbrace{\frac{x^{2}}{5}+\frac{y^{2}}{25}=1}_{\text {vertices: }(0,5)}$
3. $\frac{9 x^{2}+25 y^{2}=225}{223}$

$$
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
$$

vertices: $(5,0)(-5,0)$

co-vertices $(0,3),(0,-3)$
4. $\frac{(x-4)^{2}}{9}+\frac{(y+1)^{2}}{16}=1$

First find the center, then graph
center: $(4,-1)$
from center
co-vertice(: $1,-1$ and $\quad \sqrt{16}=4$ un $^{\prime \prime} y$-axis."

What do we do if it's not in standard form????
goal $(x-R)^{2}+\frac{(y-R)^{2}}{a^{2}}-1$ into standard form.
Ex. $1^{a^{2}} 4 x^{2}+y^{b^{2}}+24 x-4 y+36=0$
Regroup x 's together and and put $^{\prime}$ \# on othenside

$$
\begin{aligned}
& 4 x^{2}+24 x+y^{2}-4 y=-36 \\
& 4\left(x^{2}+6 x+9\right)+y^{2}-4 y+4=-36+4 \cdot 9+4 \\
& \frac{4(x+3)^{2}}{4}+\frac{36}{4}+\frac{(y-2)^{2}}{4}=\frac{4}{4} \\
& \frac{(x+3)^{2}}{4}+\frac{(y-2)^{2}}{4}=1
\end{aligned}
$$

Ex. $24 x^{2}+25 y^{2}-24 x+200 y+336=036$

$$
\begin{aligned}
& 4 x^{2}-24 x+25 y^{2}+200 y=-336 \\
& 4\left(x^{2}-6 x+9\right)+25\left(y^{2}+8 y+16\right)=-336+4 \cdot \frac{9}{36}+25 \cdot \frac{16}{36} \\
& \frac{4(x-3)^{2}}{100}+\frac{25(y+4)^{2}}{100}=\frac{100}{100} \\
& \frac{(x-3)^{2}}{25}+\frac{(y+4)^{2}}{4}=1
\end{aligned}
$$

Ex. $3 \quad 72 y+8 x^{2}+44=32 x-12 y^{2}$

Skipped today

Ex. 4 Write the equation of the ellipse graphed in standard form.

